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The previously formulated semiclassical theory (Zhao, Liang, and NakamwuPkdys. Chem. 2006 110,

8204) is used to study electron transfer in the Marcus inverted case by considering multidimensional potential
energy surfaces of donor and acceptor. The-ZNakamura formulas of nonadiabatic transition in the case

of Landau-Zener type are incorporated into the approach. The theory properly takes into account the
nonadiabatic transition coupled with the nuclear tunneling and can cover the whole range from weak to strong
coupling regime uniformly under the assumption of fast solvent relaxation. The numerical calculations are
performed for the 12-dimensional model of shifted harmonic oscillators and demonstrate that the reaction
rate with respect to the electronic coupling shows a maximum, confirming the adiabatic suppression in the
strong coupling limit. The adiabatic suppression is dramatically reduced by the effect of nuclear tunneling
compared to the case that the Land&ener formula is used. The possible extension and applications to the
case of the slow solvent dynamics are discussed.

1. Introduction If the solvent relaxation is very slow compared with the ET
) o process, multiple crossings of the transition region become

Electron transfer (ET) constitutes a ubiquitous and funda- possible even in the weak coupling regime. Ultimately, the
mental phenomenon in physics, chemistry, and biofd@gspite reactions can become independent of the electronic coupling;
the long history of the investigation of ET process because of j e | they become solvent controlled adiabatic reactions, although
its crucial importance in many fields, theoretical studies are still they are still nonadiabatic in the absence of solvent dynamics.
very much challenging, because we have to incorporate variouson the basis of the original works independently done by
quantum mechanical effects such as nonadiabatic transitionzusmafi and Burshtein and co-workefsa large number of
coupled with nuclear tunneling, quantum interference, and theoretical approaches have been proposed to treat the competi-
coupling to environment. tion between solvent relaxation and electronic transition

In the early treatments, the environmental fluctuation is (see for instance, ref 7 and references therein). Yet, the true
commonly assumed to be faster than the ET dynamics and theadiabatic process is different from the nonadiabatic one with
thermal equilibrium distribution is maintained in the donor state. slow solvent polarization modes. Several works have clarified
Under this assumption, certain limiting cases of ET are relatively the difference$ 10
well understood. In the weak electronic coupling regime, for ~ The solvent dynamics has also been extensively investigated
instance, the reactions, being named as the nonadiabatic limitwith the spin-boson model (dissipative two-state system).
can be well treated by the Fermi Golden rifeln the strong Various methods to deal with the multidimensional dynamics
electronic coupling limit where the reactions are called “adia- have been used, such as the path-integral Monte Carlo tech-
batic”, on the other hand, the well-known transition state theory nique;*-*2the quantum/classical hybrid method with the mul-
(TSTR# is applicable in the Marcus normal region. The ticonfiguration time-dependent Hartree (MCTDH) metAddnd
intermediate region between the nonadiabatic and the adiabatidhe semiclassical initial value representation theéry.
limits has still presented a challenging subject for theoretical  In the limit of fast dielectric relaxation, on the other hand,
studies. Besides, in the strong electronic coupling regime, thethe ET rate is independent of the relaxation properties of the
ET process is frequently connected to the solvent relaxation solvent. In this limit, the ET thermal rate constants can be
dynamics and the electronic coupling itself may not be a estimated by the traditional thermal equilibrium formulation

sufficient factor to justify the usage of nonadiabatic or adiabatic Without solving the dynamics equations explicitly. The well-
theory. known Marcus formula and the quantum perturbation theory

are based on this equilibrium assumption. Very recently, we
- S have formulated the semiclassical apprdadhased on the
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is composed of the two factors: the Marcus high temperature We investigate the nuclear tunneling contribution by comparing
formula and a prefactor to that. The latter contains the thermally the LZ and ZN formulas. Section 4 is the conclusion. The
averaged ZN nonadiabatic transition probability and takes care possible extensions of the approach to the case of slow solvent
of the nonadiabatic effects properly including the nuclear relaxation will be briefly discussed there.

tunneling. Thus the formula is a kind of extension of the

Marcus-Hush formuld@ and can cover the whole range of 2. Semiclassical Model of Electron Transfer

electronic coupling strength from nonadiabatic to adiabatic limit. | ihis section. we briefly explain our semiclassical theory
l\llqumerlcal tests n tTe I\/(;arcus norma;ll r?]glon ml?t Og_'|¥ conf|rm?(_j of ETZ5 within the framework of the nonadiabatic TSTand
the accuracy but also demonstrated the applicability to multi- g, me important points of the ZN formulas. Without loss of

dimensional systgrﬁé.The major points of our present treatment generality, the ET can be described by the two-level electronic
can be summarized as follows. (1) The solvent relaxation is {4, witonian

assumed to be fast. (2) Multidimensional potential energy
surfaces of donor and acceptor are explicitly considered, and H, Hug
thus the Marcus normal and inverted cases are clearly differenti- H= Hys H, 1)
ated. (3) The nonadiabatic transitions are treated by the analytical

7-19 i
ZN for_mula_é that can cover the crossover region fr(_)m whereH; )= K + Vi) is the nuclear Hamiltonian for the donor
nonadiabatic to adiabatic regimes and can treat the Class'ca”y(acceptor) state anHag is the electronic coupling. It should
forbidden transitions properly, which cannot be done by other .\ i that the potentialg» are not limited to the harmonic
methods such as those based on the Landamer (LZ) theory oscillators and the couplingias may depend on the nuclear

except for the quantum mech_anlcal numerical ;lmulatlgns coordinates. Starting from the quantum mechanical flux-side
including the perturbation theory in the weak electronic coupling correlation functior?’ one may get a semiclassical expression

lmit. for the ET ratdé
In the present paper, we extend this previous Worl the
Marcus inverted case in the fast dielectric relaxation limit. In A _5viQ)
the inverted region the ET is different from the normal case, K= Zmod gﬁfdQ e P(B,Q)IVS(Q)I6(5, — S(Q))
because it always requires the nonadiabatic transition and there )

is no adiabatic path between the donor and acceptor states
Naturally, the strong electronic coupling suppresses the ET rate

i i 26 26
as noticed in many workS: 2 Recently, several approacfes™ partition function (its definition is explicitly given in ref 16),

E?jsgseodntgiiuJj_yzth?:r:j(ij;%z{;tclcsé:)?;zgggnplr—?(?vz\j:\l/lg tvr\llgrEZQ represents the nuclear Cartesian coordinatés aégrees of
theory essentially neglects the nuclear tunneling and does notfrEEdom’ and = o = Q) = 0 determines the crossing seam

work at energies close fo and lower than the potential curve SU/1ace between the donor and acceptor. The varigbie
crossing g P introduced to define the free energy. The effective transition

probability Pt(3,Q) at a given temperaturgis evaluated from
In the present work, we use the ZN formulas to treat the the nonadiabatic transition probabiliBsn(E,Q) by
nonadiabatic transition in the inverted ET reaction and discuss

the effect of the nuclear tunneling. In the ZN theory for the _ o —B(E-V1(Q)

inverted ET, the transition probability is given by the two sets P(p.Q) = ﬁjﬁ; dEe Pan(EQ) (3)
of analytical formulas: for the energy region (1) lower than
and (2) higher than the potential curve crossing point (see details
in Appendix). [The potential curve crossing corresponding to
this case is called the Landaiéener type in which the two
diabatic potentials cross with the same sign of slopes. The
normal case, on the other hand, is called the nonadiabatic
tunneling typ€ef] Despite the formulas being quite different from
those in the normal case, the nonseparability of the electronic
and nuclear tunneling effects are properly incorporated in them.

Here Zy = /dQ e #1(Q is the classical partition function of
the donor,Zmeq is the quantum mechanical correction of the

whereE represents the total energy along the direction normal
to the crossing seam surface at the nuclear coordiQat¢/e
implementPzn(E,Q) by the ZN formulas in the case of Landau
Zener type of potential curve crossihgl81°

The basic physical idea behind eq 2 is the surface hopping
due to nonadiabatic transiti@#, 3! which has been widely used
in the study of nonadiabatic chemical reactions. The crossing
seam surfac&Q) is determined by

It has been demonstrated to overcome the defects of the LZ =V —V =0 4
formula and to work well in the wide range of coupling strength Q) Q) AQ) @)
and energy. i.e., the crossing surface between the donor and acceptor

In the numerical simulation, we use the same shifted harmonic potentials.
oscillator model with 12 degrees of freedom as used in the If one defines the free energy profile by
previous work® for the purpose of comparison with other
available approaches. The different exothermidifg is used F.(&) = e PR = fdQ efﬁvi(Q)WS(QN 5(E - SQ)) (5)
to make the reaction system to be the inverted case. The Monte
Carlo techniques are employed to perform the multidimensional and assumes; to have the parabolic shapes, eq 2 can then be

integrations as before. cast into an improved Marcus formdta
Despite the present work being limited to the fast dielectric K= 6
relaxation, this approach can incorporate the solvent dynamics = Kyarcus (6)

and the possible extensions will be discussed in the paper.
The paper is organized as follows. In section 2, we present
a brief description of the present semiclassical approach and Ao 7 -
its relation to the well-known Marcus theory. Section 3 illustrates K =———r] —P(B.50) (7)
its numerical applications to the ET rate in the inverted region. 27Hpg 7
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wherekuarcusis the celebrated Marcus formula given by In the TABLE 1. Frequencies and Reorganization Energies of 12
Dimensional Harmonic Oscillator Model

HABZ el 2 w;i (cm™) i cm™h)

_ [7B ~(BG-+AGI4

kMarcus A A € (8) 462 3038

_ 511 1372
refactork, the key quantit ,£0) is given b 584 775
p K yq WPr(B,50) is g y oo e
_ 628 2125
_ JdQ e ™M 9vQ)16(5 — SQ)P(B.Q) 677 1196
Pr(B.&0) = v 1007 269
JdQ e ™ @vgQ)o(s - SQ) 1169 638
9) 1252 351
1334 625
This represents the effective nonadiabatic transition probability 1‘5‘22 %g

averaged over the seam surface. In the evaluation of eq 9, we

first find a point on the crossing seam surface by numerical go|ytions32-34 Within the TSH (trajectory surface hopping)
approach such as the Monte Carlo technique. At this point, we gpproach to multidimensional chemical reactions the ZN
decide the hopping direction normal to the crossing seam surfaceformulas are found to produce far better agreement with
and evaluate the nonadiabatic transition probability along the the exact guantum mechanical numerical solutions than the
hopping direction which is averaged over the Boltzmann energy | 7z formula not only in the gas pha¥e3” but also in the
distribution. Finally, Pr(8,50) can be obtained by taking the  condensed phasé.
average over all points on the crossing seam surface.

If one uses the conventional transition state approximation, 3. Numerical Results
eqg 9 can be further simplified. In this cadey(3,Q) over the . . .
seam surface is assumed to be constant and the value is replaced FO' the numerical simulation we have chosen the same model

by the nonadiabatic transition probability at the saddle point &S th"?‘t used in ref. 15. The model is composed of a collection
Q)(l) Then, eq 9 becomes P y P of shifted harmonic oscillators. It should be noted that the

harmonic oscillators are used just for simplicity and the potential
- o _ functions can be general, because the ZN formulas are applicable
— PE,
Pr(p.&0) = ﬁﬂ) dE e 7Py (E.Qo) (10) to general potentials.

) ) o The Hamiltonian can be written as
At high temperatures and weak electronic coupling lifRiy-

(E,Qo) can be given by the Taylor expansion of the ZN formula |:>i2
as H=)—+V (12)
1 Iz 2 1
Po(EQ) ~ 2T (12) d
Q) ~ ———— an
A AF|V2E
p2

whereAF is the slope difference of the two diabatic potentials H. = z_‘ +V.+ AG (13)
at the crossing point. Combining eqgs 11, 10, and 7, one can 2 -2 2

easily find« = 1. Thus, eq 6 goes back to the original Marcus
formula in the nonadiabatic (weak electronic coupling) limit. with
When the coupling strength becomes strong enough, the
Pzn(E,Qo) goes to zero because two adiabatic potentials split
far from each other. Because the rate constant increases
quadratically with the electronic coupling strength in the weak
coupling regime and becomes zero in the limit of strong and
coupling, one expects that the rate takes a maximum at a certain L
electronic coupling strength. 2 2

Before concluding this section, the following two points are Vo= Ezwi (Q — Qu) (15)
clarified about the ZN formulas: (1) inclusion of the tunneling '
effect and (2) the wide applicability of the formulas. Itis obvious \here H, and H, correspond to the donor and acceptor,
that the nuclear tunneling plays an important role in the yegpectively. The parametess and reorganization energies
nonadiabatic transition at energies lower than the crossing point, ; — 1/,(,,;2 Qo) are listed in Table 1. In the present simulations,

because the tunneling from the turning point to the crossing the exothermicityAG of the reaction is set to a negative value
point is needed for the electronic transition to occur at the gg as to make the ET to occur in the inverted region.

crossing point. This tunneling effect is represented by the factor  Tne reaction coordinaté thus is defined as

Ozn in the corresponding ZN formula (see eqs A-28-28 in

the Appendix). The factowzy there is responsible for the ) 1, .,

electronic transition. The accuracy and wide applicability of §=V; = (V, T AG) = z w"Q — Ew Qy | — AG

the ZN formulas have been tested extensivVél)ot only the ! (16)
ordinary two-state problems but also various multichannel

problems have been successfully treated by the ZN formulas inand the crossing seam surface corresponds=+o&, = 0.

a wide range of coupling strengths. Even the heavy overlapping In the numerical simulations, the Monte Carlo technique is
resonances in multichannel systems have been nicely reproducedsed to evaluate the multidimensional integrals. All the detailed
in comparison with the quantum mechanically exact numerical numerical procedures can be found in refs 15 and 38.

V= % ZwizQiz (14)
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Figure 1. Diabatic free energy profiles corresponding to the potentials Figure 3. ET rate vs electronic coupling strengtias at three
defined by eq 5: ) donor; (---) acceptor. temperatures: (aJikeT = 6.7; (b) EdkaT = 10.0; (C)EdisT = 20.0.
" Key: (—) present result (eq 6); (---) the results predicted from the

T T T T Landau-Zener formula; {-*) results from the perturbation theory.

®  Exact
= Marcus

T e e Marcus and LZ formulas predict-8 times smaller rate at
E EJkegT = 10. It should be noted that the LZ result cannot reach
the exact value even &/kgT = 1.

The importance of the classically forbidden transitions at
E < E, (crossing energy) is rather obvious, if we note that the
. Boltzmann factor exponentially increases as ené&rggcreases,
10°F <. 3 where the ZN nonadiabatic transition probability is still ap-
N preciable, and the LZ probability is zerB ¢ = 0) there.

ok . - To in\{estigate_ the effect of nuclear tunneling in the_ strong
2 4 6 S 10 electronic coupling case, we plot the ET rate against the
E /kgT electronic coupling strengthag from 0.001 to 0.008 au in
Figure 2. Arrhenius plot of the ET rate in the weak electronic coupling Figure 3 at different temperatures.
(Has = 0.001 au): @) perturbation theory; ) present approach From Figure 3, we also observe that the rate initially increases
(Zeeqnsz?tr('];())r'\"amuss high temperature theory (eq 8); (-—-) Landau  qyadratically in the weak coupling regime, as predicted by the
Y: perturbation theory. As the coupling increases, the perturbation
Figure 1 shows the free energy curves with respect to reactiontheory always overestimates the rate. This is different from the
coordinate at AG = —40wo = —0.1365 au. Herepy is the Marcus normal case where the perturbation theory does not
effective frequency?® The corresponding crossing free energy necessarily provide the larger rate than the real'éiide rate
is 0.032 au. Those curves are precisely parabolic. We havepredicted by the present approach reaches a maximum at a
compared our numerical results with those from the analytical certain value of coupling strength and decreases with a further
formula. Our numerical values are in excellent agreement with increase of the coupling. This behavior of the adiabatic
those from the analytical formulas, which demonstrates the suppression is the property peculiar to the inverted case, because
accuracy of the present Monte Carlo technique in the inverted the large electronic coupling makes adiabatic potentials separate
region (the analytical values are not shown in Figure 1 becausefar from each other and the nonadiabatic transition probability
of indistinguishability). becomes small as a result. Comparing with the prediction from
In Figure 2, we present an Arrhenius plot of the ET rate the LZ formula, the ZN formulas give a much larger rate,
against temperature. The electronic coupling is taken to be especially at low temperatures. The ratios of the maximal rates
0.001 au, which corresponds to weak coupling. kkeis is obtained from the ZN formulas and the LZ theory are 2.73 at
scaled by the crossing potential enegyto make it easier to EdksgT = 6.7, 3.85 aEy/kgT = 10, and 17.29 aE/kgT = 20,
judge whether the thermal energy is higher or not than that. In respectively. We also observe that the maximal rate predicted
this weak electronic coupling case, the quantum mechanicalby the LZ and ZN formulas locate at very different coupling
perturbation theory predicts the rigorous rate. Thus, it can be Hag values. With decreasing temperature, the coupling strength
used to check the accuracy of the present approach in theat the maximal rate predicted by the LZ formula shifts toward
nonadiabatic limit. The time-dependent perturbation theory is smaller value, but it remains nearly unchanged in the case of
employed to calculate the reaction rate with the time integrations the ZN formulas. The corresponding coupling strength obtained
carried out numerically. The results are shown in Figure 2. from the ZN formulas is about 0.0045 au, whereas these values
Compared with this perturbation theory, the present approachobtained from the LZ formula become 0.0035 alEgiksT =
is in very good agreement whelBy/kgT is greater than 5. 6.7, 0.003 au aEykgT = 10, and 0.0025 au &J/kgT = 20,
Although it is expected that the present approach would becomerespectively. This interesting behavior can be understood from
invalid in the deep tunneling regime because of the semiclassicalthe energy dependence of the nonadiabatic transition probability
treatment of the nonadiabatic transition and the transition stateP. In the case of the ZN formulas, we find that the probability
approximation, the error is only 30% even in the deep tunneling becomes a maximum at a certain intermediate coupling strength
region EikgT = 10). For the comparison with other ap- at energies in the region around the crossing pBinBecause
proximations, we also show the results from the LZ formula the Boltzmann factor naturally shifts to the low-energy side as
and the Marcus high temperature formula (eq 8). The the temperature decreases, the maximum position of the ET rate
LZ formula is given in the Appendix. As is clearly seen, both is rather independent of temperature. In the case of the

Rate Constant (1/s)
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LZ formula, on the other hand, the transition probabikty is on the same footing and either employ the optimized approach
totally zero atE < E, and its peak moves towai, from the of Rips et al. or try to find the imaginary-frequency mode in
right as the coupling decreases. Because the Boltzmann factothe vicinity of crossing point on the adiabatic potentials. Because
shifts to the left as the temperature decreases, the maximumthe imaginary-frequency mode is essentially separated from the
position of the ET rate moves to the smaller coupling. other modes in the vicinity of the crossing seam and has a
It should be noted that the ZN theory is a semiclassical theory maximal mean free path along it, one can take its direction as
and it does not work well in the cases of extremely weak or the hopping direction. This has a similar property as the

strong diabatic (electronic) coupling, i.@2 > 1000 ora? < variational transition state theory, but the ZN formulas can take
0.01 (see the definition o2 in the Appendix). Fortunately, into account the nuclear tunneling effects properly.
however, ag? > 1000, the perturbation theory works well and  |n the very strong solvent friction limit, the dynamics satisfies

can be easily manipulated numerically. In the case of extremely the Smoluchowski equation. Sumi and Mar@usave introduced
strong coupling, on the other hand, the ET rate is already a sink function to take into account the contribution of high-
negligibly small. In the present model, for instance, that frequency vibrational modes, assuming that the motion of high-
corresponds télag ~ 0.015, which is still in the validity range  frequency modes are much faster than the solvent motion. Thus,

(Has < 0.019) of the ZN formulas. the motions of solvent and high-frequency modes are ap-
proximately separated and the sink function can be evaluated
4. Concluding Remarks from statistical approach. The sink function is commonly used

in the two limits: the Marcus nonadiabatic limit in the weak
coupling case and the Marcus adiabatic limit in the very strong
coupling case. In this sense, the present rate expression may be
directly used as the sink function for the fast modes to cover
from weak to very strong coupling regime properly both in
normal and in inverted regions.

The semiclassical theory of ET with use of the Zhu
Nakamura (ZN) formulas of nonadiabatic transition has been
completed under the assumption of fast solvent relaxation.
Together with the previous pagethe final formula can cover
both normal and inverted cases from the weak to strong
electronic coupling regime. Its applicability to multidimensional . ) ) o
systems has been numerically demonstrated by using the twelve- Finally, one more important point we have to keep in mind
dimensional shifted harmonic oscillators model. Even some IS the importance of the information on the free energy potential
experimental data can be nicely reproduét@ihe formula is curves and cc_)upllng fo_r realistic systems including the effects
composed of two factors: the Marcus high temperature formula Of solvent. This is crucial whenever we try to apply our theory
and the prefactor to that. The latter contains the thermally t0 real systems. In this sense the method proposed by Hirata
averaged ZN transition probability and takes care of the and his co-workers woulq be quite usgful (see, fqr instance, ref
nonadiabatic effects properly including the nuclear tunneling. 44 @nd references therein). The possible extensions mentioned
This prefactor essentially involves the surface hopping mech- @bove will be discussed in the future.
anism. Under the assumption of fast solvent relaxation, the
hopping direction can be uniquely determined by the geometry ~ Acknowledgment. This work was supported by the National
of the crossing seam surface of donor and acceptor potentials.Science Foundation of China (20333020, 20473080), the 973
The second important point to note is that the present prefactorproject funded by National Basic Research Program of China
is obtained by taking the thermal average of the nonadiabatic (No. 2004CB719903) and by the Grant-in-Aid for Specially
transition probability over the crossing seam surface. Thus, the Promoted Research on “Studies of Nonadiabatic Chemical
microscopic nonadiabatic transition information is properly Dynamics based on the ZhiNakamura theory” from MEXT,
included. The third point to be noticed is that the electronically Japan.
nonadiabatic transition and the nuclear tunneling are coupled

and cannot be treated separately. The present theory based op_ Thermally Averaged Transition Probability Based on

the ZN formulas takes into account this effect properly. The the Zhu—Nakamura Formulas in the Inverted Region
present analysis showed that the LZ formula can produce

guantitatively correct results only at very high temperatures. In  In this appendix, we explicitly present the ZhNakamura
the Marcus inverted case, the situation becomes worse. The(ZN) formulas used for the evaluation of thermally averaged
LZ formula predicts too small rates and too strong adiabatic transition probability (eq 3) in the inverted region
suppression.

As mentioned above, the present approach is limited to the — * —BE-V1(Q) B
case of fast bath relaxation in which the nonadiabatic transition PAQ) ﬂj;) dEe Pa(EQ) (A-1)
is the “bottleneck” of the reaction. If the solvent relaxation is
slow, on the other hand, the reaction becomes more complex.where Vi(Q) is the diabatic potential an@®zn(E,Q) is the
Various theories have been deve|oped to treat this case. Th@onadiabatic transition probablllty Once the nuclear coordinate
one close to the present approach is the variational transitionQ is specified on the crossing seam surface, we take the direction
state theory proposed by Rips and Pollak and otHefs42 They normal to the seam acro€s by
introduced the collective system-bath coordinate, which is
characterized by a maximal mean-free path in the vicinity of n = VYQ)/|VYQ)| (A-2)
crossing point. They have also demonstrated that the energy
gap coordinate of the two electronic states provides a goodand cut the potential energy surfaces along this direction to
description of the ET dynamics in the fast relaxation limit, which obtain one-dimensional potential curves. Because the Marcus
is consistent with the present approach, but cannot be appropriaténverted case is considered in the present model, the potential
in the strong solvent friction, and that the optimization approach curves correspond to the LandaXiener type as shown in
has to be employed to find an effective coordinate. To Figure 4. In this case, Zhu and Nakamura have provided
incorporate the solvent dynamics into the present approach, wethe analytical expressions of nonadiabatic transition probability.
shall take into account both intramolecular and solvent modes The expressions are based on the following two parameters on
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Ro Ro
O = le K,(R) dR — j;z Ky(R) dR+ o2V (A-12)

K{(R) = y/2u/h*(E — E(R))

P = — O[Tt + O, [70 IN(Op[7r) — argT' (10, /) — /4
S ZN ZN (0zn/7) gl(io/7) (A-14)

(A-13)

C
— \/_2.7[ F+ = ZN
- 4«/;2 F+2 +F2 7

(A-15)

Fi:\/\/(bz+V1)2+Vzi(b2+V1)+

\/«/ (b* = 7)® + v, £ (0" — y) (A-16)

inverted region. FS=F,(0®—[b°— 0.16/Vb* +1])  (A-17)
the adiabatic potentials: and >
FC=F (y —»L) (A-18)
2 R LA 2,057 3
2= — 1(T° T(})Z[EFERO) =5 (A-3) 1+1.5¢
2 ? ' b=b*— 09553  y,=0WP—-1  y,=7J/d16
E - [E +E /2 A-19
b= V1 [Ex(Ro) 1(R02] (Ad) (A-19)
[Ex(Ro) = Ex(Ro)] (2) E < Ex: One passage probability is given by
where . _
Pzn = [1 + B(oz/) exp(Dzy) — 9 sz(OZN)] l(A 20)
P G ) L10) el ) P
[Ex(Ro) — Ex(Ro))® where
whereE is the incident energy, other parameters are shown in B(x) = 27X exp(=2X) (A-21)
Figure 4. With parametes? andb?, the Landat-Zener formula Xy
for one passage of the crossing can be expressed as
_ (R _ (R N oa
6, =1 exp(i) (A6) o= [ IK(RIdR— [FIKAR) dR+ 65" (A-22)
4ab
— N
for b2 > 0, andp.z = 0 for b2 < 0. The overall transmission O =05 (A-23)
probability is given by
and
P2(E) = 2p,(1 - p2) (A7)
3oz 5 )
= In(1.2+ &%) — 1/a (A-24)

In the Zhu-Nakamura formulas, the electron and nuclear
tunnelings are considered simultaneously. The overall transmis-

70,y

sion probability incorporates the phase and it is expressed asthe |ocal wave numbeki(R) is defined by eq A-13. The

P,(E) = 4p (1 — Pa) SIn(yy) (A-8)
where the probabilitypzy is for one passage of crossing, and
Yz is the phasepzy andyzy are given by two sets of formulas
for E > Ex andE < Ey, respectively, wher&y is the crossing
energy.

(1) E > Ex: The various quantities in eq A-8 are given by

o=l : v
4albily + /14 b%0.42> + 0.7
\1+ 1+ b 0.4 +0.7) a9
N «/_Zn Fe
% == (A-10)
a2F 2+ F2
Yzn=0zn Tt ds (A-11)

quantitieso5" andog" are given by egs A-10 and A-15. The
phaseyzy in eq A-8 is given by
Yoy = argV) (A-25)

where

ReU = cos@,)[y/B(o/m)e"™ —

h si’(o,)e °2//B(o/7)] (A-26)

Im U = sin(o,)[B(0,/m)e?> — h? sin(0,,) x
cog(0,)e 2?B(0 /1) + 2h cof(o,) — g2 (A-27)

with

h = 1.8(a%)"%e = (A-28)
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