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The previously formulated semiclassical theory (Zhao, Liang, and Nakamura,J. Phys. Chem. A2006, 110,
8204) is used to study electron transfer in the Marcus inverted case by considering multidimensional potential
energy surfaces of donor and acceptor. The Zhu-Nakamura formulas of nonadiabatic transition in the case
of Landau-Zener type are incorporated into the approach. The theory properly takes into account the
nonadiabatic transition coupled with the nuclear tunneling and can cover the whole range from weak to strong
coupling regime uniformly under the assumption of fast solvent relaxation. The numerical calculations are
performed for the 12-dimensional model of shifted harmonic oscillators and demonstrate that the reaction
rate with respect to the electronic coupling shows a maximum, confirming the adiabatic suppression in the
strong coupling limit. The adiabatic suppression is dramatically reduced by the effect of nuclear tunneling
compared to the case that the Landau-Zener formula is used. The possible extension and applications to the
case of the slow solvent dynamics are discussed.

1. Introduction

Electron transfer (ET) constitutes a ubiquitous and funda-
mental phenomenon in physics, chemistry, and biology.1 Despite
the long history of the investigation of ET process because of
its crucial importance in many fields, theoretical studies are still
very much challenging, because we have to incorporate various
quantum mechanical effects such as nonadiabatic transition
coupled with nuclear tunneling, quantum interference, and
coupling to environment.

In the early treatments, the environmental fluctuation is
commonly assumed to be faster than the ET dynamics and the
thermal equilibrium distribution is maintained in the donor state.
Under this assumption, certain limiting cases of ET are relatively
well understood. In the weak electronic coupling regime, for
instance, the reactions, being named as the nonadiabatic limit,
can be well treated by the Fermi Golden rule.1,2 In the strong
electronic coupling limit where the reactions are called “adia-
batic”, on the other hand, the well-known transition state theory
(TST)3,4 is applicable in the Marcus normal region. The
intermediate region between the nonadiabatic and the adiabatic
limits has still presented a challenging subject for theoretical
studies. Besides, in the strong electronic coupling regime, the
ET process is frequently connected to the solvent relaxation
dynamics and the electronic coupling itself may not be a
sufficient factor to justify the usage of nonadiabatic or adiabatic
theory.

If the solvent relaxation is very slow compared with the ET
process, multiple crossings of the transition region become
possible even in the weak coupling regime. Ultimately, the
reactions can become independent of the electronic coupling;
i.e., they become solvent controlled adiabatic reactions, although
they are still nonadiabatic in the absence of solvent dynamics.
On the basis of the original works independently done by
Zusman5 and Burshtein and co-workers,6 a large number of
theoretical approaches have been proposed to treat the competi-
tion between solvent relaxation and electronic transition
(see for instance, ref 7 and references therein). Yet, the true
adiabatic process is different from the nonadiabatic one with
slow solvent polarization modes. Several works have clarified
the differences.8-10

The solvent dynamics has also been extensively investigated
with the spin-boson model (dissipative two-state system).
Various methods to deal with the multidimensional dynamics
have been used, such as the path-integral Monte Carlo tech-
nique,11,12 the quantum/classical hybrid method with the mul-
ticonfiguration time-dependent Hartree (MCTDH) method,13 and
the semiclassical initial value representation theory.14

In the limit of fast dielectric relaxation, on the other hand,
the ET rate is independent of the relaxation properties of the
solvent. In this limit, the ET thermal rate constants can be
estimated by the traditional thermal equilibrium formulation
without solving the dynamics equations explicitly. The well-
known Marcus formula and the quantum perturbation theory
are based on this equilibrium assumption. Very recently, we
have formulated the semiclassical approach15 based on the
generalized nonadiabatic TST16 and the Zhu-Nakamura (ZN)
formulas of nonadiabatic transition. The proposed ET formula
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is composed of the two factors: the Marcus high temperature
formula and a prefactor to that. The latter contains the thermally
averaged ZN nonadiabatic transition probability and takes care
of the nonadiabatic effects properly including the nuclear
tunneling. Thus the formula is a kind of extension of the
Marcus-Hush formula3 and can cover the whole range of
electronic coupling strength from nonadiabatic to adiabatic limit.
Numerical tests in the Marcus normal region not only confirmed
the accuracy but also demonstrated the applicability to multi-
dimensional systems.15 The major points of our present treatment
can be summarized as follows. (1) The solvent relaxation is
assumed to be fast. (2) Multidimensional potential energy
surfaces of donor and acceptor are explicitly considered, and
thus the Marcus normal and inverted cases are clearly differenti-
ated. (3) The nonadiabatic transitions are treated by the analytical
ZN formulas17-19 that can cover the crossover region from
nonadiabatic to adiabatic regimes and can treat the classically
forbidden transitions properly, which cannot be done by other
methods such as those based on the Landau-Zener (LZ) theory
except for the quantum mechanical numerical simulations
including the perturbation theory in the weak electronic coupling
limit.

In the present paper, we extend this previous work15 to the
Marcus inverted case in the fast dielectric relaxation limit. In
the inverted region the ET is different from the normal case,
because it always requires the nonadiabatic transition and there
is no adiabatic path between the donor and acceptor states.
Naturally, the strong electronic coupling suppresses the ET rate
as noticed in many works.20-26 Recently, several approaches22,24-26

based on the LZ nonadiabatic transition probability were
proposed to study this adiabatic suppression. However, the LZ
theory essentially neglects the nuclear tunneling and does not
work at energies close to and lower than the potential curve
crossing.

In the present work, we use the ZN formulas to treat the
nonadiabatic transition in the inverted ET reaction and discuss
the effect of the nuclear tunneling. In the ZN theory for the
inverted ET, the transition probability is given by the two sets
of analytical formulas: for the energy region (1) lower than
and (2) higher than the potential curve crossing point (see details
in Appendix). [The potential curve crossing corresponding to
this case is called the Landau-Zener type in which the two
diabatic potentials cross with the same sign of slopes. The
normal case, on the other hand, is called the nonadiabatic
tunneling type.18] Despite the formulas being quite different from
those in the normal case, the nonseparability of the electronic
and nuclear tunneling effects are properly incorporated in them.
It has been demonstrated to overcome the defects of the LZ
formula and to work well in the wide range of coupling strength
and energy.

In the numerical simulation, we use the same shifted harmonic
oscillator model with 12 degrees of freedom as used in the
previous work15 for the purpose of comparison with other
available approaches. The different exothermicity∆G is used
to make the reaction system to be the inverted case. The Monte
Carlo techniques are employed to perform the multidimensional
integrations as before.15

Despite the present work being limited to the fast dielectric
relaxation, this approach can incorporate the solvent dynamics
and the possible extensions will be discussed in the paper.

The paper is organized as follows. In section 2, we present
a brief description of the present semiclassical approach and
its relation to the well-known Marcus theory. Section 3 illustrates
its numerical applications to the ET rate in the inverted region.

We investigate the nuclear tunneling contribution by comparing
the LZ and ZN formulas. Section 4 is the conclusion. The
possible extensions of the approach to the case of slow solvent
relaxation will be briefly discussed there.

2. Semiclassical Model of Electron Transfer

In this section, we briefly explain our semiclassical theory
of ET15 within the framework of the nonadiabatic TST16 and
some important points of the ZN formulas. Without loss of
generality, the ET can be described by the two-level electronic
Hamiltonian

whereH1(2) ) K + V1(2) is the nuclear Hamiltonian for the donor
(acceptor) state andHAB is the electronic coupling. It should
be noted that the potentialsV1(2) are not limited to the harmonic
oscillators and the couplingHAB may depend on the nuclear
coordinates. Starting from the quantum mechanical flux-side
correlation function,27 one may get a semiclassical expression
for the ET rate16

Here Zcl ) ∫dQ e-âV1(Q) is the classical partition function of
the donor,Zmod is the quantum mechanical correction of the
partition function (its definition is explicitly given in ref 16),
Q represents the nuclear Cartesian coordinates ofN degrees of
freedom, andê ) ê0 ) S(Q) ) 0 determines the crossing seam
surface between the donor and acceptor. The variableê is
introduced to define the free energy. The effective transition
probabilityPT(â,Q) at a given temperatureT is evaluated from
the nonadiabatic transition probabilityPZN(E,Q) by

whereE represents the total energy along the direction normal
to the crossing seam surface at the nuclear coordinateQ. We
implementPZN(E,Q) by the ZN formulas in the case of Landau-
Zener type of potential curve crossing.17,18,19

The basic physical idea behind eq 2 is the surface hopping
due to nonadiabatic transition,28-31 which has been widely used
in the study of nonadiabatic chemical reactions. The crossing
seam surfaceS(Q) is determined by

i.e., the crossing surface between the donor and acceptor
potentials.

If one defines the free energy profile by

and assumesFi to have the parabolic shapes, eq 2 can then be
cast into an improved Marcus formula15

with

Ĥ ) [Ĥ1 HAB

HAB Ĥ2 ] (1)

k ) ZmodZcl
-1x 1

2πâ ∫dQ e-âV1(Q)PT(â,Q)|∇S(Q)|δ(ê0 - S(Q))
(2)

PT(â,Q) ) â∫0

∞
dE e-â(E-V1(Q)PZN(E,Q) (3)

S(Q) ) V1(Q) - V2(Q) ) 0 (4)

Fi(ê) ) e-âFi(ê) ) ∫dQ e-âVi(Q)|∇S(Q)|δ(ê - S(Q)) (5)

k ) κkMarcus (6)

κ ) pω
2πHAB

2x λ
πâ

PhT(â,ê0) (7)
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wherekMarcus is the celebrated Marcus formula given by In the

prefactorκ, the key quantityPhT(â,ê0) is given by

This represents the effective nonadiabatic transition probability
averaged over the seam surface. In the evaluation of eq 9, we
first find a point on the crossing seam surface by numerical
approach such as the Monte Carlo technique. At this point, we
decide the hopping direction normal to the crossing seam surface
and evaluate the nonadiabatic transition probability along the
hopping direction which is averaged over the Boltzmann energy
distribution. Finally,PhT(â,ê0) can be obtained by taking the
average over all points on the crossing seam surface.

If one uses the conventional transition state approximation,
eq 9 can be further simplified. In this case,PT(â,Q) over the
seam surface is assumed to be constant and the value is replaced
by the nonadiabatic transition probability at the saddle point
Q0. Then, eq 9 becomes

At high temperatures and weak electronic coupling limit,PZN-
(E,Q0) can be given by the Taylor expansion of the ZN formula
as

where∆F is the slope difference of the two diabatic potentials
at the crossing point. Combining eqs 11, 10, and 7, one can
easily findκ ) 1. Thus, eq 6 goes back to the original Marcus
formula in the nonadiabatic (weak electronic coupling) limit.
When the coupling strength becomes strong enough, the
PZN(E,Q0) goes to zero because two adiabatic potentials split
far from each other. Because the rate constant increases
quadratically with the electronic coupling strength in the weak
coupling regime and becomes zero in the limit of strong
coupling, one expects that the rate takes a maximum at a certain
electronic coupling strength.

Before concluding this section, the following two points are
clarified about the ZN formulas: (1) inclusion of the tunneling
effect and (2) the wide applicability of the formulas. It is obvious
that the nuclear tunneling plays an important role in the
nonadiabatic transition at energies lower than the crossing point,
because the tunneling from the turning point to the crossing
point is needed for the electronic transition to occur at the
crossing point. This tunneling effect is represented by the factor
δZN in the corresponding ZN formula (see eqs A-20-A-28 in
the Appendix). The factorσZN there is responsible for the
electronic transition. The accuracy and wide applicability of
the ZN formulas have been tested extensively.18 Not only the
ordinary two-state problems but also various multichannel
problems have been successfully treated by the ZN formulas in
a wide range of coupling strengths. Even the heavy overlapping
resonances in multichannel systems have been nicely reproduced
in comparison with the quantum mechanically exact numerical

solutions.32-34 Within the TSH (trajectory surface hopping)
approach to multidimensional chemical reactions the ZN
formulas are found to produce far better agreement with
the exact quantum mechanical numerical solutions than the
LZ formula not only in the gas phase35-37 but also in the
condensed phase.38

3. Numerical Results

For the numerical simulation we have chosen the same model
as that used in ref 15. The model is composed of a collection
of shifted harmonic oscillators. It should be noted that the
harmonic oscillators are used just for simplicity and the potential
functions can be general, because the ZN formulas are applicable
to general potentials.

The Hamiltonian can be written as

and

with

and

where H1 and H2 correspond to the donor and acceptor,
respectively. The parametersωi and reorganization energies
λi ) 1/2(ωi

2 Q0j
2) are listed in Table 1. In the present simulations,

the exothermicity∆G of the reaction is set to a negative value
so as to make the ET to occur in the inverted region.

The reaction coordinateê thus is defined as

and the crossing seam surface corresponds toê ) ê0 ) 0.
In the numerical simulations, the Monte Carlo technique is

used to evaluate the multidimensional integrals. All the detailed
numerical procedures can be found in refs 15 and 38.

kMarcus)
HAB

2

p xπâ
λ

e-(â(λ+∆G)2)/4λ (8)

PhT(â,ê0) )
∫dQ e-âV1(Q)|∇S(Q)|δ(ê - S(Q))PT(â,Q)

∫dQ e-âV1(Q)|∇S(Q)|δ(ê - S(Q))
(9)

PhT(â,ê0) ) â∫0

∞
dE e-âEPZN(E,Q0) (10)

PZN(E,Q0) ≈ 2πHAB
2

p|∆F|x2E
(11)

TABLE 1: Frequencies and Reorganization Energies of 12
Dimensional Harmonic Oscillator Model

ωi (cm-1) λi (cm-1)

462 3038
511 1372
584 775
602 1039
628 2125
677 1196

1007 269
1169 638
1252 351
1334 625
1403 275
1548 100

H1 ) ∑
i

Pi
2

2
+ V1 (12)

H2 ) ∑
i

Pi
2

2
+ V2 + ∆G (13)

V1 )
1

2
∑

i

ωi
2Qi

2 (14)

V2 )
1

2
∑

i

ωi
2(Qi - Q0i)

2 (15)

ê ) V1 - (V2 + ∆G) ) ∑
j

(ωj
2Qj -

1

2
ω2Q0j

2) - ∆G

(16)
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Figure 1 shows the free energy curves with respect to reaction
coordinateê at ∆G ) -40ω0 ) -0.1365 au. Here,ω0 is the
effective frequency.15 The corresponding crossing free energy
is 0.032 au. Those curves are precisely parabolic. We have
compared our numerical results with those from the analytical
formula. Our numerical values are in excellent agreement with
those from the analytical formulas, which demonstrates the
accuracy of the present Monte Carlo technique in the inverted
region (the analytical values are not shown in Figure 1 because
of indistinguishability).

In Figure 2, we present an Arrhenius plot of the ET rate
against temperature. The electronic coupling is taken to be
0.001 au, which corresponds to weak coupling. Thex-axis is
scaled by the crossing potential energyEa to make it easier to
judge whether the thermal energy is higher or not than that. In
this weak electronic coupling case, the quantum mechanical
perturbation theory predicts the rigorous rate. Thus, it can be
used to check the accuracy of the present approach in the
nonadiabatic limit. The time-dependent perturbation theory is
employed to calculate the reaction rate with the time integrations
carried out numerically. The results are shown in Figure 2.
Compared with this perturbation theory, the present approach
is in very good agreement whenEa/κBT is greater than 5.
Although it is expected that the present approach would become
invalid in the deep tunneling regime because of the semiclassical
treatment of the nonadiabatic transition and the transition state
approximation, the error is only 30% even in the deep tunneling
region (Ea/κBT ) 10). For the comparison with other ap-
proximations, we also show the results from the LZ formula
and the Marcus high temperature formula (eq 8). The
LZ formula is given in the Appendix. As is clearly seen, both

Marcus and LZ formulas predict 8-9 times smaller rate at
Ea/κBT ) 10. It should be noted that the LZ result cannot reach
the exact value even atEa/κBT ) 1.

The importance of the classically forbidden transitions at
E e Ea (crossing energy) is rather obvious, if we note that the
Boltzmann factor exponentially increases as energyE decreases,
where the ZN nonadiabatic transition probability is still ap-
preciable, and the LZ probability is zero (PLZ ) 0) there.

To investigate the effect of nuclear tunneling in the strong
electronic coupling case, we plot the ET rate against the
electronic coupling strengthHAB from 0.001 to 0.008 au in
Figure 3 at different temperatures.

From Figure 3, we also observe that the rate initially increases
quadratically in the weak coupling regime, as predicted by the
perturbation theory. As the coupling increases, the perturbation
theory always overestimates the rate. This is different from the
Marcus normal case where the perturbation theory does not
necessarily provide the larger rate than the real one.15 The rate
predicted by the present approach reaches a maximum at a
certain value of coupling strength and decreases with a further
increase of the coupling. This behavior of the adiabatic
suppression is the property peculiar to the inverted case, because
the large electronic coupling makes adiabatic potentials separate
far from each other and the nonadiabatic transition probability
becomes small as a result. Comparing with the prediction from
the LZ formula, the ZN formulas give a much larger rate,
especially at low temperatures. The ratios of the maximal rates
obtained from the ZN formulas and the LZ theory are 2.73 at
Ea/κBT ) 6.7, 3.85 atEa/κBT ) 10, and 17.29 atEa/κBT ) 20,
respectively. We also observe that the maximal rate predicted
by the LZ and ZN formulas locate at very different coupling
HAB values. With decreasing temperature, the coupling strength
at the maximal rate predicted by the LZ formula shifts toward
smaller value, but it remains nearly unchanged in the case of
the ZN formulas. The corresponding coupling strength obtained
from the ZN formulas is about 0.0045 au, whereas these values
obtained from the LZ formula become 0.0035 au atEa/κBT )
6.7, 0.003 au atEa/κBT ) 10, and 0.0025 au atEa/κBT ) 20,
respectively. This interesting behavior can be understood from
the energy dependence of the nonadiabatic transition probability
P. In the case of the ZN formulas, we find that the probability
becomes a maximum at a certain intermediate coupling strength
at energies in the region around the crossing pointEa. Because
the Boltzmann factor naturally shifts to the low-energy side as
the temperature decreases, the maximum position of the ET rate
is rather independent of temperature. In the case of the

Figure 1. Diabatic free energy profiles corresponding to the potentials
defined by eq 5: (s) donor; (---) acceptor.

Figure 2. Arrhenius plot of the ET rate in the weak electronic coupling
(HAB ) 0.001 au): (b) perturbation theory; (s) present approach
(eq 6); (‚‚‚) Marcus’s high temperature theory (eq 8); (---) Landau-
Zener theory.

Figure 3. ET rate vs electronic coupling strengthHAB at three
temperatures: (a)Ea/κBT ) 6.7; (b)Ea/κBT ) 10.0; (c)Ea/κBT ) 20.0.
Key: (s) present result (eq 6); (---) the results predicted from the
Landau-Zener formula; (‚‚‚) results from the perturbation theory.
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LZ formula, on the other hand, the transition probabilityPLZ is
totally zero atE e Ea and its peak moves towardEa from the
right as the coupling decreases. Because the Boltzmann factor
shifts to the left as the temperature decreases, the maximum
position of the ET rate moves to the smaller coupling.

It should be noted that the ZN theory is a semiclassical theory
and it does not work well in the cases of extremely weak or
strong diabatic (electronic) coupling, i.e.,a2 > 1000 ora2 <
0.01 (see the definition ofa2 in the Appendix). Fortunately,
however, ata2 > 1000, the perturbation theory works well and
can be easily manipulated numerically. In the case of extremely
strong coupling, on the other hand, the ET rate is already
negligibly small. In the present model, for instance, that
corresponds toHAB ∼ 0.015, which is still in the validity range
(HAB < 0.019) of the ZN formulas.

4. Concluding Remarks

The semiclassical theory of ET with use of the Zhu-
Nakamura (ZN) formulas of nonadiabatic transition has been
completed under the assumption of fast solvent relaxation.
Together with the previous paper15 the final formula can cover
both normal and inverted cases from the weak to strong
electronic coupling regime. Its applicability to multidimensional
systems has been numerically demonstrated by using the twelve-
dimensional shifted harmonic oscillators model. Even some
experimental data can be nicely reproduced.39 The formula is
composed of two factors: the Marcus high temperature formula
and the prefactor to that. The latter contains the thermally
averaged ZN transition probability and takes care of the
nonadiabatic effects properly including the nuclear tunneling.
This prefactor essentially involves the surface hopping mech-
anism. Under the assumption of fast solvent relaxation, the
hopping direction can be uniquely determined by the geometry
of the crossing seam surface of donor and acceptor potentials.
The second important point to note is that the present prefactor
is obtained by taking the thermal average of the nonadiabatic
transition probability over the crossing seam surface. Thus, the
microscopic nonadiabatic transition information is properly
included. The third point to be noticed is that the electronically
nonadiabatic transition and the nuclear tunneling are coupled
and cannot be treated separately. The present theory based on
the ZN formulas takes into account this effect properly. The
present analysis showed that the LZ formula can produce
quantitatively correct results only at very high temperatures. In
the Marcus inverted case, the situation becomes worse. The
LZ formula predicts too small rates and too strong adiabatic
suppression.

As mentioned above, the present approach is limited to the
case of fast bath relaxation in which the nonadiabatic transition
is the “bottleneck” of the reaction. If the solvent relaxation is
slow, on the other hand, the reaction becomes more complex.
Various theories have been developed to treat this case. The
one close to the present approach is the variational transition
state theory proposed by Rips and Pollak and others.24,40-42 They
introduced the collective system-bath coordinate, which is
characterized by a maximal mean-free path in the vicinity of
crossing point. They have also demonstrated that the energy
gap coordinate of the two electronic states provides a good
description of the ET dynamics in the fast relaxation limit, which
is consistent with the present approach, but cannot be appropriate
in the strong solvent friction, and that the optimization approach
has to be employed to find an effective coordinate. To
incorporate the solvent dynamics into the present approach, we
shall take into account both intramolecular and solvent modes

on the same footing and either employ the optimized approach
of Rips et al. or try to find the imaginary-frequency mode in
the vicinity of crossing point on the adiabatic potentials. Because
the imaginary-frequency mode is essentially separated from the
other modes in the vicinity of the crossing seam and has a
maximal mean free path along it, one can take its direction as
the hopping direction. This has a similar property as the
variational transition state theory, but the ZN formulas can take
into account the nuclear tunneling effects properly.

In the very strong solvent friction limit, the dynamics satisfies
the Smoluchowski equation. Sumi and Marcus43 have introduced
a sink function to take into account the contribution of high-
frequency vibrational modes, assuming that the motion of high-
frequency modes are much faster than the solvent motion. Thus,
the motions of solvent and high-frequency modes are ap-
proximately separated and the sink function can be evaluated
from statistical approach. The sink function is commonly used
in the two limits: the Marcus nonadiabatic limit in the weak
coupling case and the Marcus adiabatic limit in the very strong
coupling case. In this sense, the present rate expression may be
directly used as the sink function for the fast modes to cover
from weak to very strong coupling regime properly both in
normal and in inverted regions.

Finally, one more important point we have to keep in mind
is the importance of the information on the free energy potential
curves and coupling for realistic systems including the effects
of solvent. This is crucial whenever we try to apply our theory
to real systems. In this sense the method proposed by Hirata
and his co-workers would be quite useful (see, for instance, ref
44 and references therein). The possible extensions mentioned
above will be discussed in the future.
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A. Thermally Averaged Transition Probability Based on
the Zhu-Nakamura Formulas in the Inverted Region

In this appendix, we explicitly present the Zhu-Nakamura
(ZN) formulas used for the evaluation of thermally averaged
transition probability (eq 3) in the inverted region

where V1(Q) is the diabatic potential andPZN(E,Q) is the
nonadiabatic transition probability. Once the nuclear coordinate
Q is specified on the crossing seam surface, we take the direction
normal to the seam acrossQ by

and cut the potential energy surfaces along this direction to
obtain one-dimensional potential curves. Because the Marcus
inverted case is considered in the present model, the potential
curves correspond to the Landau-Zener type as shown in
Figure 4. In this case, Zhu and Nakamura have provided
the analytical expressions of nonadiabatic transition probability.
The expressions are based on the following two parameters on

PT(â,Q) ) â∫0

∞
dE e-â(E-V1(Q)PZN(E,Q) (A-1)

n ) ∇S(Q)/|∇S(Q)| (A-2)
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the adiabatic potentials: and

where

whereE is the incident energy, other parameters are shown in
Figure 4. With parametera2 andb2, the Landau-Zener formula
for one passage of the crossing can be expressed as

for b2 > 0, andpLZ ) 0 for b2 < 0. The overall transmission
probability is given by

In the Zhu-Nakamura formulas, the electron and nuclear
tunnelings are considered simultaneously. The overall transmis-
sion probability incorporates the phase and it is expressed as

where the probabilitypZN is for one passage of crossing, and
ψZN is the phase.pZN andψZN are given by two sets of formulas
for E > EX andE < EX, respectively, whereEX is the crossing
energy.

(1) E > EX: The various quantities in eq A-8 are given by

(2) E e EX: One passage probability is given by

where

and

The local wave numberKi(R) is defined by eq A-13. The
quantitiesσ0

ZN andδ0
ZN are given by eqs A-10 and A-15. The

phaseψZN in eq A-8 is given by

where

with

Figure 4. Schematic two state adiabatic potentials in the case of the
inverted region.

a2 ) xd2 - 1
p2

(T2
0 - T1

0)2[E2(R0) - E1(R0)]
(A-3)

b2 ) xd2 - 1
E - [E2(R0) + E1(R0)]/2

[E2(R0) - E1(R0)]
2

(A-4)

d2 )
[E2(T1

0) - E2(T1
0)][E1(T2

0)] - E1(T2
0)]

[E2(R0) - E1(R0)]
2

(A-5)

pLZ ) 1 - exp( π
4ab) (A-6)

PLZ(E) ) 2pLZ(1 - pLZ) (A-7)

PZN(E) ) 4pZN(1 - pZN) sin2(ψZN) (A-8)

pZN ) exp[- π
4a|b|( 2

1 + x1 + b-4(0.4a2 + 0.7))1/2]
(A-9)

σ0
ZN )

x2π

4xa2

F-
C

F+
2 + F-

2
(A-10)

ψZN ) σZN + φS (A-11)

σZN ) ∫T1

R0
K1(R) dR - ∫T2

R0
K2(R) dR + σ0

ZN (A-12)

Kj(R) ) x2µ/p2(E - Ej(R)) (A-13)

φS ) -δZN/π + δZN/π ln(δZN/π) - argΓ(iδZN/π) - π/4
(A-14)

δZN )
x2π

4xa2

F+
C

F+
2 + F-

2
≡ δ0

ZN (A-15)

F( ) xx(b2 + γ1)
2 + γ2 ( (b2 + γ1) +

xx(b2 - γ1)
2 + γ2 ( (b2 - γ1) (A-16)

F+
C ) F+(b2 f [b2 - 0.16bx/xb4 + 1]) (A-17)

F-
C ) F-(γ2 f

0.45xd2

1 + 1.5e2.2bx|bx|0.57) (A-18)

bx ) b2 - 0.9553 γ1 ) 0.9xd2 - 1 γ2 ) 7xd2/16
(A-19)

pZN ) [1 + B(σZN/π) exp(2δZN) - g sin2(σZN)]-1

(A-20)

B(x) )
2πx2x exp(-2x)

xΓ2(x)
(A-21)

δZN ) ∫T1

R0|K1(R)| dR - ∫T2

R0|K2(R) dR + δ0
ZN (A-22)

σZN ) σ0
ZN (A-23)

g )
3σZN

πδZN
ln(1.2+ a2) - 1/a2 (A-24)

ψZN ) arg(U) (A-25)

ReU ) cos(σZN)[xB(σZN/π)eδZN -

h sin2(σZN)e-δZN/xB(σZN/π)] (A-26)

Im U ) sin(σZN)[B(σZN/π)e2δZN - h2 sin2(σZN) ×
cos2(σZN)e-2δZN/B(σZN/π) + 2h cos2(σZN) - g]1/2 (A-27)

h ) 1.8(a2)0.23e-δZN (A-28)
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